Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations.
نویسندگان
چکیده
Duchenne muscular dystrophy (DMD) is a fatal X-linked muscle-wasting disorder caused by mutations in the 2.4 Mb dystrophin-encoding DMD gene. The integration of gene delivery and gene editing technologies based on viral vectors and sequence-specific designer nucleases, respectively, constitutes a potential therapeutic modality for permanently repairing defective DMD alleles in patient-derived myogenic cells. Therefore, we sought to investigate the feasibility of combining adenoviral vectors (AdVs) with CRISPR/Cas9 RNA-guided nucleases (RGNs) alone or together with transcriptional activator-like effector nucleases (TALENs), for endogenous DMD repair through non-homologous end-joining (NHEJ). The strategies tested involved; incorporating small insertions or deletions at out-of-frame sequences for reading frame resetting, splice acceptor knockout for DNA-level exon skipping, and RGN-RGN or RGN-TALEN multiplexing for targeted exon(s) removal. We demonstrate that genome editing based on the activation and recruitment of the NHEJ DNA repair pathway after AdV delivery of designer nuclease genes, is a versatile and robust approach for repairing DMD mutations in bulk populations of patient-derived muscle progenitor cells (up to 37% of corrected DMD templates). These results open up a DNA-level genetic medicine strategy in which viral vector-mediated transient designer nuclease expression leads to permanent and regulated dystrophin synthesis from corrected native DMD alleles.
منابع مشابه
Adenoviral vectors encoding CRISPR/Cas9 multiplexes rescue dystrophin synthesis in unselected populations of DMD muscle cells
Mutations disrupting the reading frame of the ~2.4 Mb dystrophin-encoding DMD gene cause a fatal X-linked muscle-wasting disorder called Duchenne muscular dystrophy (DMD). Genome editing based on paired RNA-guided nucleases (RGNs) from CRISPR/Cas9 systems has been proposed for permanently repairing faulty DMD loci. However, such multiplexing strategies require the development and testing of del...
متن کاملRepression-free utrophin-A 5’UTR variants
Mutation in the dystrophin gene results Duchenne Muscular Dystrophy (DMD), an X-linked fatal neuromuscular disorder. Dystrophin deficiency can be compensated by upregulation of utrophin, an autosomal homologue of dystrophin. But the expression of utrophin in adults is restricted to myotendinous and neuromuscular junctions. Therefore utrophin upregulation throughout the muscle fiber can only be ...
متن کاملStrategies for Molecular Therapy of Duchenne Muscular Dystrophy
Expression of mini-dystrophin driven by the 1.35 kb MCK promoter ameliorates muscular dystrophy in fast, but not in slow muscles of transgenic mdx mice. Gentamicin fails to increase dystrophin expression in dystrophin-deficient muscle. (2003) U7 snRNAs induce correction of mutated dystrophin pre-mRNA by exon skipping. Antibody-mediated targeting of an adenovirus vector modified to contain a syn...
متن کاملRespiratory muscles as a target for adenovirus-mediated gene therapy.
The protein dystrophin is absent in the muscles of patients with Duchenne muscular dystrophy (DMD) as well as dystrophin-deficient mice with muscular dystrophy (mdx mice). The mdx mouse diaphragm closely resembles the human DMD phenotype and thus provides a useful model for studies of dystrophin gene replacement. Recombinant adenovirus vectors (AdVs) hold promise as a means for delivering a fun...
متن کاملNerve growth factor improves the muscle regeneration capacity of muscle stem cells in dystrophic muscle.
Researchers have attempted to use gene- and cell-based therapies to restore dystrophin and alleviate the muscle weakness that results from Duchenne muscular dystrophy (DMD). Our research group has isolated populations of muscle-derived stem cells (MDSCs) from the postnatal skeletal muscle of mice. In comparison with satellite cells, MDSCs display an improved transplantation capacity in dystroph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nucleic acids research
دوره 44 3 شماره
صفحات -
تاریخ انتشار 2016